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Predictive numerical simulations of sub-
surface processes require not only more so-
phisticated physical models but also more
accurate and reliable discretization methods
for these models. In [1] we study a new
monotone finite volume scheme for diffusion
problems with a heterogeneous anisotropic
material tensor. Examples of anisotropic dif-
fusion includes diffusion in geological for-
mations, head conduction in structured ma-
terials and crystals, image processing, bio-
logical systems, and plasma physics. De-
velopment of a new discretization scheme
should be based on the requirements moti-
vated by both practical implementation and
physical background. This scheme must

- be locally conservative;

- be monotone, i.e. preserve positivity of
the differential solution;

- be applicable to unstructured, anisotro-
pic, and severely distorted meshes;

- allow arbitrary diffusion tensors;

- result in sparse systems with a minimal
number of non-zero entries;

- have higher than the first-order accuracy
for smooth solutions.

The discretization methods used in exist-
ing simulations, such as Mixed Finite El-
ement (MFE) method, Finite Volume (FV)
method, Mimetic Finite Difference (MFD)
method, Multi Point Flux Approximation
(MPFA) method, satisfy most of these re-
quirements except the monotonicity. They

Mixed finite element method, Ch
min = −1.7

Nonlinear finite volume method, Ch
min = 0

Profile of solution Ch(x,y) on the distorted trian-
gular grid. Domain: unit square with the hole
in the center. Problem: diffusion equation with
highly anisotropic tensor. Ratio of tensor’s eigen-
values is 103. Tensor is rotated with respect to
coordinate axes on 60◦ clockwise. Ch = 2 on
the hole, Ch = 0 on the boundary of unit square.
Analytical solution satisfies maximum principle,
0 ≤C(x,y) ≤ 2. The MFE method produces non-
physical solution with strong negative values.

fail to preserve positivity of a continuum so-
lution when the diffusion tensor is heteroge-
neous and anisotropic or the computational
mesh is strongly perturbed. For instance, in
simulations of a subsurface transport, a neg-
ative discrete solution of the pressure equa-
tion implies non-physical Darcy velocities
and hence wrong prediction of a contami-
nant transport.

Recently a few nonlinear monotone sche-
mes have been suggested [2, 3]. We studied
schemes based on the nonlinear flux formula
proposed in [3]. We rectified the Le Potier’s
scheme for the case of unstructured trian-
gulations and full diffusion tensors by giv-
ing correct positions of reference points. To
improve robustness of the scheme, we pro-
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posed an alternative interpolation technique
[4]. We gave the first proof of scheme mono-
tonicity for the steady diffusion equation.
We studied numerically important features
of the scheme such as violation of the dis-
crete maximum principle and impact of the
diffusion anisotropy on the scheme conver-
gence. We extended the scheme to shape reg-
ular polygonal meshes and heterogeneous
isotropic diffusion tensors.

The mixed form of the diffusion equation
includes the mass conservation equation and
the constitutive equation:

divq = Q, q = −DgradC,

where D is the diffusion tensor, Q is the
source term, and q is the flux of concentra-
tion C.

All the methods mentined above use the
same discretization of the mass conservation
equation and differ by their approximation
of the flux (constitutive) equation. In the
nonlinear finite volume scheme a reference
point xT is defined for each mesh cell T to ap-
proximate the concentration C. The position
of the reference point depends on the geome-
try of T and value of the diffusion tensor. For
isotropic diffusion tensors and triangular cell
T , the center of the inscribed circle is the ac-
ceptable position for the reference point.

The flux q is approximated at the middle
of each mesh edge using a weighted differ-
ence of concentrations in two neighboring
cells. Nonlinearity comes from the fact that
these weights depend on a concentration at
the edge vertices. To approximate solution at
a mesh vertex, a linear interpolation method
has been proposed in [3]. This method uses
three closest reference points which form a
triangle containing the vertex. We found out
that this method is not robust for problems
with strong anisotropy and sharp gradients.
We proposed the inverse distance weighting
interpolation method [4] for such a type of
problems. This method uses values at all ref-
erence points from the closest neighborhood

of the vertex. Numerical experiments show
that the new method is more stable for highly
anisotropic problems.

The nonlinear finite volume method re-
sults in a sparse system whose dimension is
equal to the number of mesh cells T . For tri-
angular meshes, the matrix of this system has
at most four non-zero elements in each row.
To solve the nonlinear algebraic problem we
use the Picard iterative method which guar-
antees monotonicity of the discrete solution
for all iterative steps.

The computational results demonstrate the
flexibility and accuracy of the scheme. For
sufficiently smooth solutions, we achieve the
second-order convergence for consentration
C and at least the first-order for flux q in a
mesh-dependent L2-norm. For non-smooth,
highly anisotropic solutions we observe at
least the first-order convergence for both un-
knowns.
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